Nuestro sitio web utiliza cookies para mejorar y personalizar su experiencia y para mostrar anuncios (si los hay). Nuestro sitio web también puede incluir cookies de terceros como Google Adsense, Google Analytics, Youtube. Al usar el sitio web, usted consiente el uso de cookies. Hemos actualizado nuestra Política de Privacidad. Por favor, haga clic en el botón para consultar nuestra Política de Privacidad.

Aspectos Cruciales en la Gobernanza Internacional de la Inteligencia Artificial

Qué se discute en la gobernanza internacional de la IA

La gobernanza internacional de la inteligencia artificial (IA) congrega a gobiernos, organizaciones internacionales, empresas, instituciones académicas y actores de la sociedad civil para establecer pautas, estándares y herramientas destinadas a orientar cómo se desarrolla y emplea esta tecnología. Las discusiones integran dimensiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se detallan los asuntos clave, ejemplos específicos y los mecanismos que distintos foros proponen o ya ponen en práctica.

Riesgos para la seguridad y la integridad

La atención dedicada a la seguridad abarca errores involuntarios, usos malintencionados y repercusiones estratégicas de gran alcance. Entre los aspectos esenciales se encuentran:

  • Riesgos sistémicos: la posibilidad de que modelos extremadamente avanzados se comporten de manera inesperada o superen los mecanismos de control, comprometiendo infraestructuras críticas.
  • Uso dual y militarización: la incorporación de IA en armamento, sistemas de vigilancia y operaciones de ciberataque. En debates de la ONU y del Convenio sobre Ciertas Armas Convencionales se analizan opciones para regular o incluso vetar sistemas de armas totalmente autónomos.
  • Reducción del riesgo por diseño: estrategias como evaluaciones adversarias, auditorías de seguridad y la exigencia de análisis de riesgo previos a cualquier implementación.

Ejemplo: en el escenario multilateral se debate la formulación de reglas obligatorias relacionadas con SALA (sistemas de armas letales autónomas) y la implementación de mecanismos de verificación destinados a impedir su proliferación.

Derechos humanos, privacidad y vigilancia

La IA genera desafíos para los derechos civiles y las libertades públicas:

  • Reconocimiento facial y vigilancia masiva: posible debilitamiento de la privacidad y aparición de sesgos. Diversos países y la Unión Europea analizan imponer límites o pausas a su implementación a gran escala.
  • Protección de datos: gestión responsable de grandes conjuntos de información para entrenar modelos, junto con aspectos de consentimiento, reducción de datos y procesos de anonimización.
  • Libertad de expresión e información: sistemas de moderación automatizada, creación de contenido engañoso y deepfakes que pueden influir en dinámicas democráticas.

Caso: campañas de desinformación potenciadas por generación automática de contenido han llevado a debates en foros electorales y a propuestas para obligaciones de transparencia sobre el uso de sistemas generativos en campañas.

Equidad, no discriminación y inclusión

Los modelos pueden reflejar o incluso intensificar sesgos existentes cuando los datos de entrenamiento no resultan suficientemente representativos:

  • Discriminación algorítmica: revisiones independientes, indicadores de equidad y procedimientos de corrección.
  • Acceso y desigualdad global: posibilidad de que la capacidad tecnológica se concentre en unas pocas naciones o corporaciones; urgencia de impulsar la transferencia tecnológica y la cooperación para fortalecer el desarrollo local.

Dato y ejemplo: diversas investigaciones han evidenciado que los modelos formados con información sesgada ofrecen un rendimiento inferior para los colectivos menos representados; por esta razón, crece la demanda de iniciativas como las evaluaciones de impacto social y los requisitos de pruebas públicas.

Transparencia, explicabilidad y trazabilidad

Los reguladores discuten cómo garantizar que sistemas complejos sean comprensibles y auditables:

  • Obligaciones de transparencia: informar cuando una decisión automatizada afecta a una persona, publicar documentación técnica (fichas del modelo, orígenes de datos) y facilitar mecanismos de recurso.
  • Explicabilidad: niveles adecuados de explicación técnica para distintos públicos (usuario final, regulador, tribunal).
  • Trazabilidad y registro: bitácoras de entrenamiento y despliegue para permitir auditorías posteriores.

Ejemplo: la propuesta legislativa de la Unión Europea clasifica sistemas según riesgo y exige documentación detallada para los considerados de alto riesgo.

Responsabilidad jurídica y cumplimiento

La asignación de responsabilidades ante daños generados por IA es un tema central:

  • Regímenes de responsabilidad: debate entre responsabilidad del desarrollador, del proveedor, del integrador o del usuario final.
  • Certificación y conformidad: modelos de certificación previa, auditorías independientes y sanciones por incumplimiento.
  • Reparación a las víctimas: mecanismos rápidos para compensación y remediación.

Datos normativos: la propuesta de la UE contempla sanciones proporcionales a la gravedad, que incluyen multas significativas para incumplimientos en sistemas de alto riesgo.

Propiedad intelectual y acceso a datos

El uso de contenidos destinados al entrenamiento de modelos ha provocado fricciones entre la creación, la reproducción y el aprendizaje automático:

  • Derechos de autor y recopilación de datos: disputas legales y demandas de precisión acerca de si el proceso de entrenamiento representa un uso permitido o necesita una licencia formal.
  • Modelos y datos como bienes estratégicos: discusiones sobre la conveniencia de imponer licencias obligatorias, habilitar el intercambio de modelos en repositorios abiertos o limitar su exportación.

Caso: varios litigios recientes en distintos países cuestionan la legalidad de entrenar modelos con contenidos protegidos, impulsando reformas legales y acuerdos entre sectores.

Economía, mercado laboral y dinámica competitiva

La IA es capaz de remodelar mercados, empleos y la organización empresarial:

  • Sustitución y creación de empleo: diversas investigaciones revelan impactos mixtos: ciertas labores se automatizan mientras otras reciben apoyo tecnológico, por lo que resultan esenciales las políticas activas de capacitación.
  • Concentración de mercado: existe la posibilidad de que surjan monopolios debido al dominio de datos y de modelos centrales, lo que impulsa el debate sobre competencia e interoperabilidad.
  • Impuestos y redistribución: se analizan esquemas de tributación sobre ganancias ligadas a la automatización, así como mecanismos para sostener la protección social y los programas de recualificación.
Sustentabilidad del entorno

El impacto energético y material asociado al entrenamiento y funcionamiento de los modelos se encuentra sujeto a regulaciones y prácticas recomendadas:

  • Huella de carbono: la preparación de modelos de gran escala puede requerir un uso considerable de energía; se debaten métricas y posibles límites.
  • Optimización y transparencia energética: adopción de sistemas de eficiencia, divulgación del consumo y transición hacia infraestructuras alimentadas con fuentes renovables.

Estudio relevante: investigaciones han mostrado que el entrenamiento intensivo de modelos de lenguaje puede generar emisiones equivalentes a decenas o cientos de toneladas de CO2 si no se optimiza el proceso.

Regulaciones técnicas, estándares y procesos de interoperabilidad

La adopción de estándares facilita seguridad, confianza y comercio:

  • Marco de normalización: desarrollo de estándares técnicos internacionales sobre robustez, interfaces y formatos de datos.
  • Interoperabilidad: garantizar que sistemas distintos puedan cooperar con garantías de seguridad y privacidad.
  • Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y foros regionales participan en la armonización normativa.

Ejemplo: la OCDE elaboró una serie de principios sobre la IA que se han convertido en una guía para numerosas políticas públicas.

Procesos de verificación, observancia y coordinación multilateral

Sin mecanismos de verificación creíbles, las reglas quedan en papel:

  • Inspecciones y auditorías internacionales: propuestas para observatorios multilaterales que supervisen cumplimiento y compartan información técnica.
  • Mecanismos de cooperación técnica: asistencia para países con menos capacidad técnica, intercambio de mejores prácticas y fondos para fortalecer gobernanza.
  • Sanciones y medidas comerciales: discusión sobre controles a la exportación de tecnologías sensibles y medidas diplomáticas ante incumplimientos.

Caso: restricciones en el comercio de semiconductores demuestran cómo la tecnología de IA puede convertirse en materia de política comercial y seguridad.

Instrumentos normativos y recursos aplicados

Las respuestas normativas pueden adoptar formatos rígidos o enfoques más adaptables:

  • Regulación vinculante: normas nacionales o regionales que establecen deberes y contemplan sanciones (por ejemplo, una propuesta legislativa dentro de la Unión Europea).
  • Autorregulación y códigos de conducta: lineamientos promovidos por empresas o asociaciones que suelen ofrecer mayor rapidez, aunque con requisitos menos estrictos.
  • Herramientas de cumplimiento: análisis de impacto, auditorías externas, sellos de conformidad y espacios regulatorios de prueba destinados a evaluar nuevas políticas.

Participación ciudadana y gobernanza democrática

La validez de las normas se sustenta en una participación amplia:

  • Procesos participativos: audiencias públicas, órganos éticos y la presencia de comunidades involucradas.
  • Educación y alfabetización digital: con el fin de que la población comprenda los riesgos y se involucre en la toma de decisiones.

Ejemplo: iniciativas de consulta ciudadana en varios países han influido en requisitos de transparencia y límites al uso de reconocimiento facial.

Sobresalientes tensiones geopolíticas

La búsqueda por liderar la IA conlleva riesgos de fragmentación:

  • Competencia tecnológica: estrategias de inversión, apoyos estatales y pactos que podrían originar ecosistemas tecnológicos separados.
  • Normas divergentes: marcos regulatorios distintos (desde posturas más estrictas hasta otras más flexibles) influyen en el comercio y en la colaboración global.

Resultado: la gobernanza global busca equilibrar harmonización normativa con soberanía tecnológica.

Iniciativas y menciones multilaterales

Existen varias iniciativas que sirven de marco de referencia:

  • Principios de la OCDE: lineamientos orientadores sobre la IA confiable.
  • Recomendación de la UNESCO: marco ético para orientar políticas nacionales.
  • Propuestas regionales: la Unión Europea impulsa un reglamento centrado en riesgo y obligaciones de transparencia y seguridad.

Estas iniciativas muestran la combinación de normas no vinculantes y propuestas legislativas concretas que avanzan en distintos ritmos.

La gobernanza internacional de la IA es un entramado dinámico que debe integrar exigencias técnicas, valores democráticos y realidades geopolíticas. Las soluciones efectivas requieren marcos normativos claros, capacidades de verificación creíbles y mecanismos

Por Otilia Adame Luevano

También te puede gustar